
Debugging
on Mac OS X

Session 909

Debugging
on Mac OS X

Dave Payne
Manager, Development Environment Group

What You Will Learn
•Approaches to debugging on Mac OS X
•Debugging with Project Builder
•Debugging with CodeWarrior Pro 8
•Advanced debugging with GDB

Project BuilderProject Builder

GDBGDB

Target ApplicationTarget Application

CodeWarriorCodeWarrior

GDBGDB

Target ApplicationTarget Application

Mac OS X Debugging
Architecture

Why Did My App Crash?
•Turn on crash logging in Console

• Applications –>Utilities –> Console

Crash Logs in Console
•Crash logs appear in:

• Separate window for each app in Console
• Latest crash is at end of window
• Caution—content retained across reboots!

• /Library/Logs/<appname>.crashlog
•Logs include:

• Stack backtrace for all threads
• Register state for thread that crashed
• File and line number, if binary has debug symbols

What’s Stomping Memory?
•Hardware watchpoints in gdb
•MallocDebug “helps” detect such problems

Memory Stomper
Analysis With MallocDebug
•Encourages badly behaved programs to crash

• Attach to program with gdb
•Overwrites freed memory
•Adds guard words before and after blocks
•Writes warning messages to Console
•Read documentation in MallocDebug

Why Is My App Hung?
•Use ‘sample’ command line tool

• Command line version of Sampler
• Works with any binary
• Examples:

• sample <pid> <duration>
• sample myapp 10

• Output in /tmp/<app>_<pid>.sample.txt
•‘gdb attach’

Debugging
on Project Builder

Rab Hagy
Project Builder Debugging Engineer

Project Builder Debugging:
What You Will Learn
•Project Builder Debugging Overview
•Configuring your project for debugging

• Build settings
• Executable settings

•Viewing opaque data types

Project Builder Debugging
Overview
•Project Builder IDE Debugger Framework

• GUI for threads, stacks, variables and PC
• Breakpoints: persistent, source line, symbolic
• Cross-project debugging

•Plugins for specific languages
• AppleScript
• Java (using wire-protocol)
• C-based languages (using GDB)

Build for Debugging
•Building Related Projects

• Use a common build folder for related projects
• Solves build-time and run-time issues
• “Project–>Show Info” to set folder

•Compiler Settings For Debugging
• Enable generation of symbolic information
• Use Optimization Level Zero (“-O0”)

• Tip: Verify both Build Style and Target Settings

Executables
•Program which is run or debugged

• Settings for Arguments, Environment, etc.
•Implicitly created by Application and Tool targets
•Active Target separate from Active Executable

• E.g. build shared library, run App that uses it
• Tip: customize toolbar with Active Executable
pop-up button

Custom Executables
•External program; not part of your project

• E.g., program which loads your Plug-in
•Java Tool and Applet targets have default
custom executables

Demo
David Ewing

Project Builder Engineer

Executables

Opaque Data Types
•Types without exposed implementation structure

• Examples: Carbon, CoreFoundation, Foundation
• No symbolic information for types

• “Opaque” even to debugger!
• Have functional interface

•Use functional interface to types to show content
•First step: NSString

• Show content and dynamic type of NSStrings
• Validates ObjC Pointers

Preview: Viewing Data
•Expression Window

• Add/Remove expression
• Global
• Pointer reference

• Evaluated in UI current context
•Variables in own window

Demo
Data Viewing

Debugging in
CodeWarrior Pro 8

Ken Ryall
Director of Debugging, Metrowerks

CodeWarrior Debugging
•CodeWarrior for Mac OS, v8 new
debugger features

• Performance improvements
• Faster debugging with new linker
• Smart variable formatting (SVF)

• Variable formatter
• Custom data viewers

CodeWarrior Debugging (Cont.)
•More new debugger features

• Improved memory window
and register browser

• Event points–magic breakpoints
• Log point
• Pause point
• Skip point
• Script point
• Sound point

Demo
Ken Ryall

Director of Debugging, Metrowerks

CodeWarrior on Mac OS X Debugging

Advanced GDB Features

Jim Ingham
Senior Debugging Engineer

Debugging With GDB
•Goals

• Developers don’t need to know GDB
• GDB console available for advanced users

•Why would you use GDB?
• Good low-level debugger
• Situations not yet covered in the GUI
• Scriptable—looping, conditions, and variables
• Extensible—user commands, plug-ins

•GDB manual is in:
/Developer/Documentation/DeveloperTools/gdb/“gdb_toc.html”

Apple Enhancements to GDB
•Objective-C support
•Shared library support

• ‘future-break’
• ‘set sharedlibrary load-rules dyld AppKit none’

•Persistent breakpoints (‘save-breakpoints’)
•Plug-in mechanism

• Write in native code—C / C++ / Objective-C
• Very fast and flexible
• Errors in extension will crash GDB
• Interface will likely change
• See GPL for redistribution terms
• MacsBug available in /usr/libexec/gdb/plugins/MacsBug

Augmenting Project Builder
•Access to features for which GUI
is not (yet) available

• Remote debugging
• Watchpoints
• Kernel debugging

Remote Debugging
•Advantages

• Can use debugger without deactivating App
• Good for debugging full-screen applications

•Steps:
• Start your application on the remote machine
• ssh into the remote machine
• ‘attach’ to application

• Use AppName<Tab> to look up PID…
•Project Builder support planned in the future

Watchpoints
•We now have watchpoint support—
using page protection

•Fast, unless you are pounding on that page
•Use the GDB “watch” command
•Watch any expression, or give it a raw address

Watchpoints (Cont.)
•Caveats

• It does not work well for stack objects
• Because it is a “page protection”scheme, if
you watch a page passed into a kernel call,
and the call tries to write to the page,
the call will fail

• E.g., watching a buffer that you are passing
to “read” will not currently work

Kernel Debugging
•Two-machine solution (KDP protocol)
•Kernel looks like any other program
•Debugging agent in kernel talks to GDB

• “Hard” kernel lock-ups can hang agent,
causing gdb to lose connection to the kernel

• You can now “detach” from the kernel, and
reconnect from another machine

•/Developer/Documentation/Kernel/Tutorials
/KEXTutorials/index.html

Advanced Features
•Expression evaluator
•Control constructs
•User-defined commands

Expression Evaluator
•You can call any function in the target
•Functions CHANGE target state
•You can evaluate any expression in the
current source language

•You can store values in “convenience variables”
which have the form “$name”

•Examples:
• call (void) DebugPrintWindowList ()

• set $oldVal = ((Bar *) foo)->someData

Control Constructs
•You can repeat commands with “while”

• Syntax:
while <Any valid expression>

 <any valid gdb commands>

end

•You can do tests with “if”
• Syntax:

if <any valid expression>

 <any gdb commands>

end

Example: Linked Lists…
•Suppose you have:

struct linkedList {
int someData;
struct linkedList *next;

} *listHead;
•Once you get a long list inspecting the list in
the debugger is very tedious

•Can also use this technique for OO collections
like NSArray, if there is an iterator method you
can call from gdb

• Harder for C++ STL where you need to create an
iterator—you cannot create C++ objects from gdb

Example: Linked Lists
• Do:

(gdb) set $ptr = listHead
(gdb) while $ptr != 0
 printf “Ptr: 0x%lx has value %d\n”, $ptr, $ptr->someData
 set $ptr = $ptr->next
end
Ptr: 0x54a0 has value 9
Ptr: 0x5490 has value 8
Ptr: 0x5480 has value 7
Ptr: 0x5470 has value 6
Ptr: 0x5460 has value 5
Ptr: 0x5450 has value 4
…

• Use the “printf” command to make readable output:
printf <C format string>, <args>, …

Linked Lists (Cont.)
• Use “if” to hunt out particular elements:

(gdb) set $ptr = listHead
(gdb) while $ptr != 0
if $ptr->someData == 5
 printf “Element at 0x%lx = %d\n”, $ptr, $ptr->someData
 end
 set $ptr = $ptr->next
end
Element at 0x5460 = 5

• Rummaging through more complex collections works the
 same way, but you would get the next object with a “next”
 method of some sort

• Also useful with C Arrays, using an index not a pointer

User-Defined Commands
• Complex scripts can be made into user-defined commands:

(gdb) define findListElement
 set $ptr = listHead
 while $ptr != 0
 if $ptr->someData == $arg0
 printf ”Element at 0x%lx = %d\n", $ptr, $ptr->someData
 end
 set $ptr = $ptr->next
 end
end
(gdb) findListElement 5
Element at 0x5460 = 5

• You can put this in your .gdbinit file, and it will get read in
 automatically—or you can put it in some other file, and use
 the gdb “source” command

Summary
•Delivering on our commitment to great
development tools

•Powerful debugging support in Project Builder
•Additional improvements on the way
•Please give us your feedback

Technical Documentation
•Command line tools have man pages

• At the terminal prompt: man <toolname>

•Reference docs in
/Developer/Documentation/DevTools for:

• gdb
• MachORuntime

For More Information
•Apple Developer Connection tools page
http://developer.apple.com/tools/

•Project Builder page
http://developer.apple.com/tools/projectbuilder/

•Apple Developer Connection downloads
http://connect.apple.com/

•Bug Reporting
http://developer.apple.com/bugreporter/

Roadmap
San Jose AirportSan Jose Airport

Who to Contact
Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

Mailing Lists at Apple
http://lists.apple.com
 projectbuilder-users

Development Tools Engineering Feedback
macosx-tools-feedback@group.apple.com

Q&A

Godfrey DiGiorgi
Technology Manager, Development Tools

ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

